Mendeley Brainstorm – The Future of Energy

Britain stopped using coal for a day; will a day come when it is no longer used?

On the 21st of April, Great Britain experienced its first day without burning any coal since the 19th century. According to the National Grid, the energy was provided by natural gas, followed by nuclear and renewables. Given this example, what will our future energy mix look like? We are looking for the most well thought out answer to this question in up to 150 words: use the comment feature below the blog and please feel free to promote your research! The winner will receive an Amazon gift certificate worth £50 and a bag full of Mendeley items; competition closes June 14, 2017.

Making a Fossil of a Fuel

Coal powered the industrial revolution in Great Britain. However, as of the 21st of April, it was clear that the country is no longer dependent upon this once ubiquitous fuel. Britain’s energy on April 21, in descending order, came from natural gas, nuclear, wind, biomass and solar.

Back to the Past?

Not everyone is so keen on this development. In March, US President Donald Trump lifted a temporary ban on coal leases; his popularity in states like West Virginia was based on the promise to bring coal mines back into operation.

Powering the Future

However, the continued use of fossil fuels has a significant environmental cost. The World Health Organisation estimated in 2012 that up to 7 million deaths in that year were attributable to air pollution. Additionally, most climate scientists state that burning fossil fuels is wreaking havoc with the Earth’s climate.

What Next?

Given that Britain has shown that we can stop using at least one fossil fuel, what’s next? What will be the energy source of the future? Tell us!

About Mendeley Brainstorms

Our Brainstorms are challenges so we can engage with you, our users, on the hottest topics in the world of research.  We look for the most in-depth and well thought through responses; the best response as judged by the Mendeley team will earn a prize.

References

Fears, D. (2017). Donald Trump promises to bring back coal jobs but experts disagree. The Independent. [online] Available at: http://www.independent.co.uk/news/world/americas/donald-trump-coal-mining-jobs-promise-experts-disagree-executive-order-a7656486.html [Accessed 8 May 2017].

Golson, J. (2017). Britain goes a day without coal-fired power for first time since the 1880s. The Verge. [online] Available at: https://www.theverge.com/2017/4/23/15395754/coal-great-britain-electricity-power-plant [Accessed 8 May 2017].

Mendeley Brainstorm – Send in the Clones – We Have a Winner!

Is cloning going to be part of our future?

Many thanks to all those who entered the Mendeley Brainstorm related to Cloning; picking a winner was problematic, however in the end, we selected Preston Whisenant’s post:

Genetic engineering has been happening, is happening, and will continue to happen regardless of how people feel about it. Science won’t stop, and shouldn’t stop, it’s exploration into genetics and its quest to save humanity from unspeakable, terrible, genetic diseases and complications simply because some people are against it! Even if banned, genetic research would still take place, it would simply take place with less oversight, less well-meaning intentions, and less sophistication (Kurzgesagt, 2016).

Health is the top priority; it is unethical to stop research that could save people from unnecessary complications and lifetimes of suffering! Kant, a philosopher, maintains that it is not only the action, but the intention of the action that determines virtue (Kant, 1785). To therefore deny people freedom from such suffering simply because one’s ‘value system’ makes one uncomfortable when considering it may not be malicious, but it is sheer ignorance and it is cruel!

We asked Preston what inspired him, He wrote:

I was particularly interested in the sociological and ethical implications of the development or lack thereof of this technology and how it should be utilized. I wonder then, if that technology had existed earlier if it could’ve been utilized to spare many from all kinds of problems and inconveniences caused by genetics.

Thank you, Preston!

Those who didn’t win this time are encouraged to respond to the latest Mendeley Brainstorm, regarding The End of Driving. Thanks again to all our participants.

Borrowing parts from Nature: A Pint of Science preview post

It is fairly hard to improve upon Nature’s designs. But Pint of Science speaker Adam Wollman is trying. His research combines biology and technology to learn how nature designs it’s molecules and figure how we can learn from and harness it’s perfect design.

Mendeley is proud to be partnering with Pint of Science for the third year running. 

As an introduction to the great talks on offer we’re going to be previewing some of the most interesting here on the Mendeley Blog, featuring speakers from across all Pint of Science themes. You can follow along on our blog under the tag PintofScience17 or on Twitter under the hashtag #pint17.

You can book tickets to hear Adam live in York on 17 May or follow him on Twitter @a_wollman.

(YouTube video caption:  “The nanoscale railway in action. Microtubules in red. Cargo in green.”)

Nanotechnology: Borrowing parts from nature

Nature is very good at building complex things. Plants and animals grow from tiny single cells containing all the information needed to build the organism encoded in DNA.

In contrast, humans need vast factories and machines to build anything near as complex. But to build like nature requires knowledge of biological processes which aren’t fully understood. My research work is split between investigating basic biological processes and using what has been learned to try to build things.

Interrogating biology

I investigate biology using advanced optical microscopes, capable of observing individual molecules at work inside living cells. These microscopes exploit fluorescence where certain molecules called fluorophores emit longer wavelength light when excited by a shorter wavelength. By filtering out the excitation light and only observing light emitted by fluorophores, a very high signal to noise ratio is achieved. Using very sensitive high speed cameras and high intensity lasers, single molecules of fluorophore can be observed.

Most biological processes in cells are driven by proteins, so to observe them, they must be replaced with fluorescent copies. This is done directly at the genetic level, replacing the gene for a protein of interest with a functional fluorescent copy. I’ve used this technique to observe lots different biological processes including DNA replication, cell division and photosynthesis.

Learning to build like nature

The cells in our body are made sturdy through a structure called the cytoskeleton, which is as it sounds: a molecular skeleton inside each cell. It expands out from the nucleus to the edges of the cell in a dense network.

But the cytoskeleton has another role, it also serves as a kind of railway, allowing other protein transporters called motor proteins to transport cargo around the cell. Inspired by this, I tried to employ the same design ideas to build my own nanoscale railway. I extracted motor proteins from cells, as well as the cytoskeleton tracks, called microtubules. To control everything, I borrowed another component from the cell, DNA, using the information carrying capabilities of DNA to instruct the motor proteins. Some of them became assemblers, putting the tracks together into a star shaped network called an aster. Others became shuttles, carrying cargo or other DNA signals into the centre of the aster.

The nano-railway could be used to gather components to speed up chemical reactions or help detect very dilute analytes in a biosensor.

 

 

 

The world’s most diabolical virus: Pint of Science preview

We’re hoping this post goes viral, but only because we’re rabid for the subject. Okay, puns aside, Dr. Kirstyn Brunker’s research into rabies and viruses as part of Pint of Science is a fascinating look at some of the work scientists are doing to solve global hazards.

Mendeley is proud to be partnering with Pint of Science for the third year running. 

As an introduction to the great talks on offer we’re going to be previewing some of the most interesting here on the Mendeley Blog, featuring speakers from across all Pint of Science themes. You can follow along on our blog under the tag PintofScience17 or on Twitter under the hashtag #pint17.

You can book tickets to hear Kirstyn live in Glasgow on 16 May or follow her on Twitter @kirstynbrunker.

THE WORLD’S MOST DIABOLICAL VIRUS

Diabolical literally means “characteristic of the devil”, a term that quite aptly describes one of the most fearsome diseases known to man: Rabies.

Rabies is an infectious viral disease largely transmitted to humans by the bites of infected animals. Domestic dogs are the main culprits, responsible for >95% of human cases. With a fatality rate of nearly 100% rabies has the grim accolade of being the deadliest disease on the planet. Once symptoms appear death is inevitable. These symptoms include: vomiting, confusion, hydrophobia (fear of water), excessive salivation, severe agitation, aggression, hallucinations and paralysis. Descriptions of rabies have included such terms as raging monsters, savage madness and inhuman possession, giving an idea of the terrible trauma it inflicts on victims and their families.

The nightmare and reality

Rabies has established itself in popular culture and mythology as a symbol of evil, inspiring a multitude of books, film and television. An obvious inspiration for vampires, zombies and werewolves it’s responsible for much of the horror film genre! Start to look for it and you’ll find rabies everywhere- Hector’s “strong fury” on the battlefield attributed to a “violent lyssa” (an old name for rabies) in Homer’s epic Odyssey; the symbolism of the rabid dog in Harper Lee’s To Kill a Mockingbird; the rage in 28 days later; Old Yeller

Such is the cultural mythology surrounding rabies it is almost unbelievable as a real-world disease. Yet rabies is still widespread, killing over 59,000 people every year- that’s one person every ten minutes. Perhaps even more unbelievable is that it is entirely preventable via vaccination. Post-exposure vaccination for humans is guaranteed to prevent disease if given promptly after a bite but can be costly and hard to obtain. Alternatively, mass vaccination of the dog population has proven to be an effective, cost-effective means to eliminate rabies in humans. This approach has rid the developed world of rabies but its burden still lies heavily on low- and middle-income countries across Asia and Africa.

A minion for evil

A major stumbling block to rabies control is a lack of adequate surveillance systems that enable resources to be directed effectively. This can be challenging to achieve in resource-limited settings. As a postdoctoral scientist at the University of Glasgow, I work with a dynamic group of rabies researchers across the UK and Tanzania. My research focuses on how we can use genetic information from the virus as part of our surveillance of rabies in Tanzania. Lately this has involved finding ways to do this in the field, using only basic laboratory equipment and limited resources.

Conventional genetic sequencing technologies require expensive equipment, specialist training and state of the art facilities- generally out of the question in the impoverished settings where rabies is most prevalent. Usually samples from Tanzania have to be shipped to the UK for lab work and analysis. This is not only expensive, slow and detrimental to sample quality- it limits capacity building in Tanzania and causes a major lag in feedback to communities.

Step in the minion. No, not the cute little yellow things from that film. The MinION is a pocket-sized genetic sequencer; robust and portable it may help overcome some of these problems. It works by taking electrical current measurements as single strands of DNA pass through nanopores in a membrane, outputting DNA sequence in real-time. I’m hoping to use one as part of a “lab in a suitcase” setup, establishing a ready-to-go genetic surveillance toolkit to use in Tanzania. This will enable rapid feedback to help manage outbreaks.

With a global target to eliminate dog-mediated human rabies by 2030, tools like these are crucial in the fight against rabies.

 

 

Webinar: Gender bias in academic publishing

Join Publishing Campus for this highly anticipated webinar in which three industry experts explore the issue of unconscious bias and its role in academic publishing.

About the webinar

Unconscious gender bias in academia can have a real impact on women’s careers. Whether it’s obtaining a job or publishing a paper, quick judgments made subconsciously by reviewers can have very tangible consequences. In this webinar, you’ll learn the ins and outs of identifying and avoiding the pitfalls of gender bias. You’ll come away with clear evidence of the influence of unconscious bias in peer review, and hear about some of the recent efforts by publishers to reduce it, making the publishing process fairer and more equitable for all.

Attend this event – Thursday 11 May, 2017 – 2 pm BST / 3 pm CEST / 9 am EST

Ask the experts

Join the Gender Bias in Academic Publishing Mendeley group to field your questions to the experts and engage in deeper conversation with other attendees.

Presenter bios

Joanne Kamens is the Executive Director of Addgene, a mission-driven nonprofit dedicated to helping scientists around the world share useful research reagents and data. She holds a PhD in Genetics from Harvard Medical School and founded the Boston chapter of the Association for Women in Science. In 2010, she received the “Catalyst Award from the Science Club for Girls” for her longstanding dedication to empowering women in the STEM fields.

Nicole Neuman holds a PhD in biochemistry from Tufts University, which was followed by a post-doctoral fellowship at Brigham and Women’s Hospital, studying cell signaling. She joined Cell Press in 2012 as Editor of Trends in Biochemical Sciences. Nicole has enjoyed engaging Cell Press in community conversations around gender in the STEM fields, first by organizing a symposium around gender and science and now by co-leading the “The Female Scientist,” a column in the Cell Press blog Crosstalk.

Kate Hibbert holds a degree in Earth Sciences from the University of Oxford and a PhD in Isotope Geochemistry from the University of Bristol. She joined Elsevier in 2015 as a Publisher for its Geochemistry and Planetary Science Journals and has been a true champion for women in STEM.

Dealing with Dementors: How to Handle Negative Workplaces

 

It seems wholly appropriate to publish a piece on workplace negativity on Wednesday — the middle of the week can sometimes feel impossible to get over, especially when negative colleagues are dragging you down. Can you believe there is a scientific reason for why your aggravating colleague acts the way he or she does? Dr. Alexandra Gerbasi explains in this Pint of Science preview post!

Mendeley is proud to be partnering with Pint of Science for the third year running. 

As an introduction to the great talks on offer we’re going to be previewing some of the most interesting here on the Mendeley Blog, featuring speakers from across all Pint of Science themes. You can follow along on our blog under the tag PintofScience17 or on Twitter under the hashtag #pint17.

You can book tickets to hear Alexandra live in Guilford on 17 May or follow her on Twitter @gerbilocity.

Dealing with Dementors: Handling Negative Workplaces

When people find out that I study negative workplace interactions, I am usually flooded with stories like “This guy I work with Steve is such a jerk. Every time I have to deal with him, I feel like he is sucking out my soul.” It is rare that someone tells me that they work in the best place ever and everything is sunshine and rainbows. This isn’t surprising, given the recent finding that over 50 percent of people experience rude or uncivil behaviour at work on a daily basis. This could lead us to think that we are surrounded by jerks or generally rude people. In that same study, researchers found that less than 5 percent of people are intentionally rude to their colleagues. So, two possible things are going on that small group of people are just going around being horrible to everyone, or the majority of the negative interactions are not intentional, and something else is at the core of those behaviours.

How do people become dementors?

If most people aren’t intentionally jerks, why are they acting that way? Most of the time, it is stress. Again and again, in my research, I see stress as the common cause of the negative behaviours. One common theme I see is people who have been promoted into leadership roles, but do not have the skills to handle the demands. Another common themes are role conflicts, people are constantly being torn in multiple directions and overworked.

What effects do dementors have on the workplace?

Research has also repeatedly shown that negative experiences and interactions are more powerful and involve much more cognitive processing than positive experience, it is no wonder that people are always reflecting on these experiences and individuals. Dealing with dementors reduces individual well-being and increases stress. High performers are likely to leave companies when they have to deal with dementors. Those who can leave are likely to become demotivated and can become dementors themselves. Negative behaviours can spread,

What can you do to manage dementors?

If the dementor is a co-worker, often the easiest thing to do is work around them. People who are consistent dementors become excluded. Building up your social support network is also important, having positive support is essential. If you are the supervisor or manager of a dementor, first, using 360 degree feedback can be useful for the individual, so they can see how their actions are affecting others, simply being aware can make a huge difference. Provide training, if you are dealing with someone who needs skill development, give it to them, and provide the opportunities for them to grow into their role. If the person seems unwilling to change, perhaps they are one of the 5 percent that are intentional uncivil, and it might be time to let them go.

 

 

Beware the Banana Killer! The future of food: A Pint of Science Preview

We’re bananas about our latest Pint of Science post! Sarah Schmidt is previewing her research on Fusarium wilt of bananas and how engineering resistance in bananas is a crucial part of our future food security.

Mendeley is proud to be partnering with Pint of Science for the third year running.

As an introduction to the great talks on offer we’re going to be previewing some of the most interesting here on the Mendeley Blog, featuring speakers from across all Pint of Science themes. You can follow along on our blog under the tag PintofScience17 or on Twitter under the hashtag #pint17.

You can book tickets to hear Sarah live in Norwich on 15 May or follow her on Twitter @bananarootsblog.

The banana killer – How to engineer resistance to a devastating fungal disease of bananas

Every morning, I slice a banana in my breakfast cereals. And I am not alone. On average, every person in the UK eats 100 bananas per year. In other countries, it’s even more. In Uganda, people consume between 3 and 11 bananas per day!

Bananas are the most popular fruit in the world and the fourth most important food staple after wheat, rice and maize. The most traded banana cultivar is called Cavendish. This is the banana you find in supermarkets around the world – medium size with nice curves and a fresh yellow skin. Almost 50% of the bananas grown worldwide are Cavendish. Curiously, the Cavendish variety originates from England. A keen gardener at the Chatsworth estate grew the exotic plant in the greenhouse and named it after his employer Lord Cavendish.

The Cavendish banana became popular in the 1960s, when a devastating epidemic of Fusarium Wilt wiped out banana plantations in Middle America. This Fusarium Wilt epidemic almost led to a complete collapse of the banana export industry. Only the Cavendish banana was resistant and could be grown on the infested plantations.

Take a close look at your bananas!

Unfortunately, a new Fusarium wilt race appeared in the 1990s in South East Asia and this new race is able to infect Cavendish bananas and many other cultivars. Breeding bananas is incredibly time and space-consuming, because edible bananas don’t have seeds. They are so-called virgin fruits that can only be propagated clonally. If you have a close look at your Cavendish banana at home, you will notice the little black dots within the tasty fruit pulp. These little dots are the remnants of the stone-like seeds of wild bananas. Without seeds, breeding new varieties is painfully slow and certainly not fast enough to save the Cavendish.

That’s why I am exploring new ways of combating Fusarium wilt disease by taking leads from the causal agent: the soil-borne fungus called Fusarium oxysporum f. sp. cubense. The fungus infects the plants through the banana roots and grows within the plant’s water transporting system. Banana plants sense this attack and respond by the formation of gummy-like substances that block the transport system and eventually lead to wilting and collapse of the whole plant. This is an overreaction of the immune system that is similar to the fever attacks of a Malaria patient.

Like the Malaria pathogen, the Fusarium fungus secretes small proteins to manipulate the immune system of the host. These proteins are similar to secreted proteins of other Fusarium species that infect, for example, tomato plants. In tomato, some of these secreted proteins are recognized by immune receptors, which results in disease resistance. Using biotechnology, we can transfer the tomato immune receptors into banana to make them resistant against Fusarium wilt in banana. I am also employing the genes coding for small secreted proteins to develop diagnostic tools to identify the fungus in non-symptomatic banana plants. These diagnostics are important to halt the worldwide spread of Fusarium wilt and to prevent its entry to the export plantations in Middle America.

If we don’t prevent it, it will be the end of bananas in the UK.